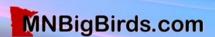
Basics of Giant Scale Design

by: David P. Andersen


Are you ready to design?

- Have you mastered; Plan Building or Kit Bashing?
- Are you a good pilot?
- Do you understand basic principles of structure and flight?
- Will you enjoy every step in the process? »

"I don't have to be an aeronautical engineer. I start with a proven design."

- Wayne Siewert

Design Methods

Analytical

- Accurate and optimal
- Math intensive
- Requires super computer and wind tunnel
- For professional aeronautical engineers only

Design Methods

Analytical

- Accurate and optimal.
- Math intensive.
- Requires super computer and wind tunnel.
- For professional aeronautical engineers only.

Heuristic

- Derive from accumulated experience.
- Modest change from previous designs.
- Most applicable to modeling.

Six Steps in Scale Design

- Gather all the documentation that you'll ever need
- Decide on model size & purchase components
- Enlarge 3-views to model size
- Trace the 3-view & fill in structure
- Save the original, build from drawing copies
- Update the drawings as you build & fly »

Labor Required

10% Research

30% Design & Draw

5% Cut Wooden Parts

10% Make F/G, Plastic & Metal Parts

20% Build Airframe

25% Cover, Paint & Detail

Build or Buy?

- Wheels
- Vacuum-Formed Canopy
- Struts
- Fiberglass Wheel Pants
- Fiberglass Cowl
- Decals
- Muffler

If you buy, fine tune model size to match available parts...

Documentation

- 5-View Drawings w/Cross Sections
- Black & White Photos
- Color Drawings or Photos
- Color Proofs
- Paint Chips
- Plastic Models

Gather all documentation you'll ever need before proceeding ...

Reconcile Differences!

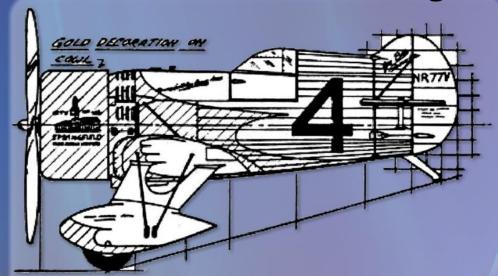
When to Deviate From Scale Never!

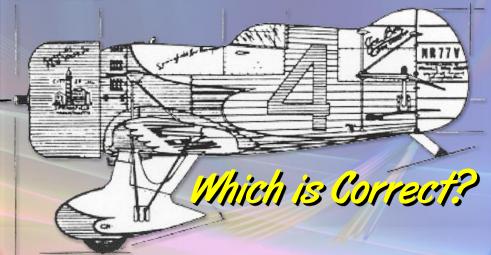
Well ... except for compelling reason!

Examples:

- Washout For low speed stability
- Wing thickness at root to fit retracts
- Stab incidence if too negative
- Wheel doors/pants Cut high for grass

Don't!


- Enlarge the tail
- Use flat sheet instead of an airfoil in the tail
- Move the wheels forward
- Increase dihedral
- Thicken the wing
- Shorten the landing gear
- Add down thrust or side thrust
- Use horsepower to overcome excess weight



Choose 3-Views Carefully!

- Weight is proportional to size³
- Area is proportional to size²
- Speed is proportional to √size

 Example:

70" span 7Lb model scaled up to 100" will weigh 20Lbs, fly 20% faster and require twice the paint...


Power is Proportional to Size 3.5

Note: Small change in size requires large change in power!

Example:

60 - sized model of 70" wing span, enlarged to 100" span requires 3.45 times the power (Saito 180, Moki 2.1, Quadra 35 ...)

Start With The Propeller

What size propeller and RPM do I need to propel this airplane?

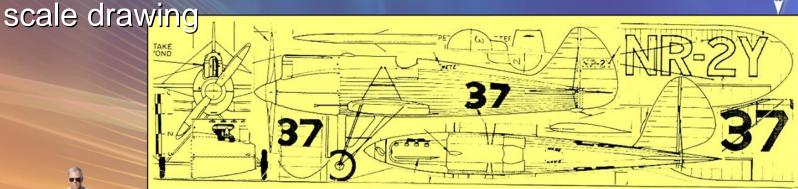
Then pick the engine!

Enlarging 3-Views to Model Size

1/4 scale which is 1/4 bigger than ...

1/5th scale which is 1/5th bigger than ... •

1/6th scale and so on ...


- Calculate enlargement factor = model span/3-view span
- Calculate drawing height = 36"/enlargement factor
 - Cutup, rearrange 3-views, draw calibration lines
- Enlarge to 36" height max, any length
- Verify correct dimensions length & width

Enlarging Services

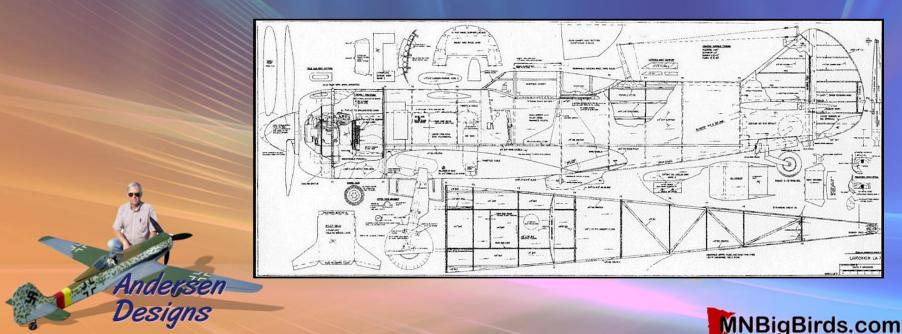
- Look in Yellow Pages for Engineering copying services, OZLID copying, etc... for architects, engineers, surveyors, etc...
- Copy size standard is 36" max height, any length

Photocopy enlargement cost is about \$40 for one ¼

36" Max After Enlargement

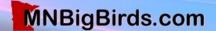
Copy structural details from a proven design of similar size & construction.

For Example:

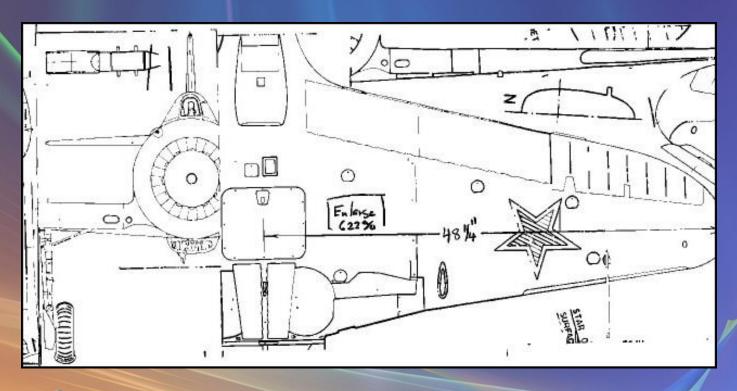

- To design a 95" span Nakajima Ki 27
 Nate, refer to plans of a Ziroli P-47
- Same rib spacing, ply thickness, sheeting, stringers, mounts etc
- Same washout, incidence angles, throws, C.G., weight etc...

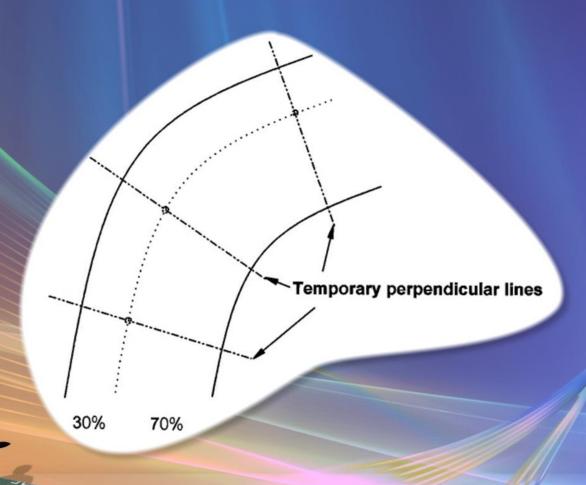
Drawing the Plans

- Draw master w/0.5 HB pencil on 1/8" quadrille-rule vellum
- Let wide paper hang over left & right edges of table
- White table works better for tracing
- Build from copy of master drawing
- Update the master as you build! »

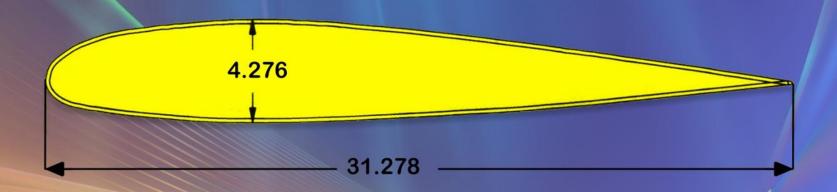

Drawing Tools

- 0.5mm HB Mechanical Pencil
- Eraser & Thin Metal Shield
- 45°-90° Plastic Triangle
- 30°-60°-90° Plastic Triangle
- 12" Ruler
- Long Straight Edge
- Compass

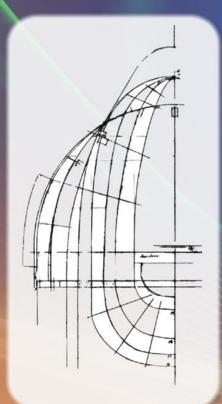

- Circle Template
- French Curve
- Ships Curve
- 36" White Drawing Table
- Bright Shadow-Less Lighting


Enlarged Wing View Ready For Tracing

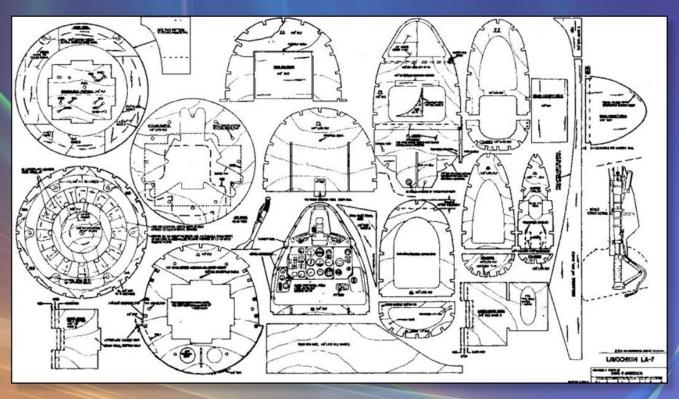
Lofting a Line Between Two Other Lines


Lofting Wing Ribs

- Draw wing top-view & front view w/rib positions
- Superimpose root, mid & tip airfoils ... no washout yet!
- Adjust chords & thickness per wing top & front views
- Mark L.E., T.E., top, bottom of airfoils
- Interpolate curves of remaining airfoils
- Trace each airfoil, subtracting sheeting & add spar notches
- Rotate rib for washout, add alignment tabs
- Add details to each rib for ailerons, flaps, retracts, etc...



ModelCAD Intermediate Drawing of a Wing Rib


Lofting Fuselage Formers

- Draw fuselage top view & side views w/ former positions
- Superimpose known former halves
- Adjust height and width per fuselage top & side views
- Mark width & height of remaining formers
- Interpolate curves of remaining formers
- Trace each former half, subtract sheeting, add stringer notches
- Reverse the drawing, trace the other half

Fuselage Formers

Draw The Master

- Draw the master copy on vellum or Mylar ®
- Build the airplane from copies of the Master!
- Update the Master as you build & fly, not later!

Enjoy Your Next Scale Project!

Resources ...

HighFlight Spring 2010

Simplified Scale Design – Article


www.MNBigBirds.com

- Free! Scale Plan Downloads, 3-Views, Documentation, Fiberglass Parts, Scale Wheels, Retracts etc...
- Scale Flyers of Minnesota News Letters, Events, Meetings Info etc
- Contact Information; Andersen
 Designs, Micko Aircraft & Accessories
- Additional Resources & Building Tools!

Additional Resources

- Shindin Machine Custom Landing Gear, Shindinmachine.com
- SAC Midwest Custom Instrument Panels, Sacmidwest.com
- Axel's Pilots Custom Pilot Figures, Axels-scale-pilots.de
- Pro-Mark Dry-Transfer Decals & paint masks, Pro-Mark.com
- TnT Landing Gear Struts, TnTLandingGear.com
- Abell Hobbies Sheet Metal Struts, AbellRC.com
- Bisson Custom Mufflers BissonMufflers.com
- Bob Banka's Aircraft Documentation Photos & 3Views, Bobsairdoc.com
- "Vacuum Forming for the Hobbyist" Book on Home Vacuum Forming, RCM Plans, RCMPlans.com
- ModelCAD 3000 Free Download; Modelcad-3000.uptodown.com/en/
- Clearprint Drafting & Design Fade-Out Vellum, 1000H-8, 36" x 20 yds

